
www.manaraa.com

Improved Proxy Re-Encryption Schemes with Applications to Secure
Distributed Storage

Giuseppe Ateniese∗ Kevin Fu† Matthew Green∗ Susan Hohenberger†

Abstract

In 1998, Blaze, Bleumer, and Strauss proposed an ap-
plication called atomic proxy re-encryption, in which a
semi-trusted proxy converts a ciphertext for Alice into a
ciphertext for Bob without seeing the underlying plain-
text. We predict that fast and secure re-encryption will
become increasingly popular as a method for manag-
ing encrypted file systems. Although efficiently com-
putable, the wide-spread adoption of BBS re-encryption
has been hindered by considerable security risks. Fol-
lowing recent work of Ivan and Dodis, we present new
re-encryption schemes that realize a stronger notion of
security and we demonstrate the usefulness of proxy re-
encryption as a method of adding access control to the
SFS read-only file system. Performance measurements
of our experimental file system demonstrate that proxy
re-encryption can work effectively in practice.

1. Introduction

Proxy re-encryption allows a proxy to transform a ci-
phertext computed under Alice’s public key into one that
can be opened by Bob’s secret key. There are many use-
ful applications of this primitive. For instance, Alice
might wish to temporarily forward encrypted email to
her colleague Bob, without giving him her secret key. In
this case, Alice the delegator could designate a proxy to
re-encrypt her incoming mail into a format that Bob the
delegatee can decrypt using his own secret key. Clearly,
Alice could provide her secret key to the proxy but this
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requires an unrealistic level of trust in the proxy.
We present several efficient proxy re-encryption

schemes that offer security improvements over earlier
approaches. The primary advantage of our schemes
is that they are unidirectional (i.e., Alice can delegate
to Bob without Bob having to delegate to her) and do
not require delegators to reveal all of their secret key
to anyone– or even interact with the delegatee– in or-
der to allow a proxy to re-encrypt their ciphertexts. In
our schemes, only a limited amount of trust is placed
in the proxy. For example, it is not able to decrypt the
ciphertexts it re-encrypts and we prove our schemes se-
cure even when the proxy publishes all the re-encryption
information it knows. This enables a number of applica-
tions that would not be practical if the proxy needed to
be fully trusted.

We present an application for proxy cryptography in
securing distributed file systems. Our system uses a
centralized access control server to manage access to
encrypted files stored on distributed, untrusted repli-
cas. We use proxy re-encryption to allow for centrally-
managed access control without granting full decryption
rights to the access control server.

No experimental implementation of proxy re-
encryption schemes has been provided, to our knowl-
edge, which makes it difficult to argue about the effec-
tiveness of the proxy re-encryption primitive. In this pa-
per, we provide new protocols with improved security
guarantees (based on bilinear maps) and demonstrate
their practicality based on runtime experiments.

1.1. Proxy Re-encryption Background

A methodology for delegating decryption rights was
first introduced by Mambo and Okamoto [30] purely as
an efficiency improvement over traditional decrypt-and-
then-encrypt approaches.

In 1998, Blaze, Bleumer, and Strauss [6] proposed
the notion of “atomic proxy cryptography”, in which a
semi-trusted proxy computes a function that converts ci-
phertexts for Alice into ciphertexts for Bob without see-
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ing the underlying plaintext. In their El Gamal based
scheme, with modulus a safe prime p = 2q+1, the proxy
is entrusted with the delegation key b/a mod q for the
purpose of diverting ciphertexts from Alice to Bob via
computing (mgk

mod p, (gak)b/a
mod p). The authors

noted, however, that this scheme contained an inherent
restriction: it is bidirectional; that is, the value b/a can
be used to divert ciphertexts from Alice to Bob and vice
versa. Thus, this scheme is only useful when the trust
relationship between Alice and Bob is mutual. (This
problem can be solved, for any scheme, by generating
an additional, otherwise unused, key pair for the delega-
tee, but this introduces additional overhead.) The BBS
scheme contains further problems. Delegation in the
BBS scheme is transitive, which means that the proxy
alone can create delegation rights between two entities
that have never agreed on this. For example, from the
values a/b and b/c, the proxy can re-encrypt messages
from Alice to Carol. Another drawback to this scheme
is that if the proxy and Bob collude, they can recover her
secret key as (a/b) ∗ b = a!

Jakobsson [26] developed a quorum-based protocol
where the proxy is divided into sub-components, each
controlling a share of the re-encryption key; here, the
keys of the delegator are safe so long as some of the
proxies are honest. A similar approach was considered
by Zhou, Mars, Schneider and Redz [39].

Recently, Ivan and Dodis [14] realized unidirectional
proxy encryption for El Gamal, RSA, and an IBE
scheme by sharing the user’s secret key between two
parties. They also solved the problem of the proxy
alone assigning new delegation rights. In their unidi-
rectional El Gamal scheme, Alice’s secret key s is di-
vided into two shares s1 and s2, where s = s1 + s2,
and distributed to the proxy and Bob. On receiv-
ing ciphertexts of the form (mgsk, gk), the proxy first
computes (mgsk/(gk)s1 ), which Bob can decrypt as
(mgs2k/(gk)s2) = m. Although this scheme offers
some advantages over the BBS approach, it introduces
new drawbacks as well. These “secret-sharing” schemes
do not change ciphertexts for Alice into ciphertexts for
Bob in the purest sense (i.e., so that Bob can decrypt
them with his own secret key), they delegate decryption
by requiring Bob to store additional secrets (i.e., shares
{s

(i)
2 }) that may in practice be difficult for him to man-

age. For example, in our file system in Section 4, the
number of secrets a user must manage should remain
constant regardless of the number of files it accesses.
One exception is the Ivan-Dodis IBE scheme [14] where
the global secret that decrypts all ciphertexts is shared
between the proxy and the delegatee. Thus, the delega-

tee need only store a single secret, but an obvious draw-
back is that when the proxy and any delegatee in the sys-
tem collude, they can decrypt everyone else’s messages.

Thus, proxy re-encryption protocols combining the
various advantages of the BBS and Ivan-Dodis schemes,
along with new features such as time-limited delega-
tions, remained an open problem. (We provide a list
of these desirable features in Section 3.) Our re-
sults can be viewed as contributing both to the set of
key-insulated [12, 13, 15] and signcryption [3, 4, 38]
schemes, where Alice may expose her secret key with-
out needing to change her public key and/or use the
same public key for encryption and signing purposes.
This work should not be confused with the “universal
re-encryption” literature [24], which re-randomizes ci-
phertexts instead of changing the public key.

1.2. Applications of Proxy Re-encryption

Proxy re-encryption has many exciting applications
in addition to the previous proposals [6, 14, 26, 39]
for email forwarding, law enforcement, and performing
cryptographic operations on storage-limited devices. In
particular, proxy cryptography has natural applications
to secure network file storage. The following paragraphs
describe potential applications of proxy re-encryption.

Secure File Systems. A secure file system is a natural
application of proxy re-encryption because the system
often assumes a model of untrusted storage.

A number of distributed file systems build confidential
storage out of untrusted components by using crypto-
graphic storage [2, 5, 22, 28]. Confidentiality is obtained
by encrypting the contents of stored files. These en-
crypted files can then be stored on untrusted file servers.
The server operators can distribute encrypted files with-
out having access to the plaintext files themselves.

In a single-user cryptographic file system, access con-
trol is straightforward. The user creates all the keys pro-
tecting content. Thus, there is no key distribution prob-
lem. With group sharing in cryptographic storage, group
members must rendezvous with content owners to obtain
decryption keys for accessing files.

Systems with cryptographic storage such as the
SWALLOW object store [32] or CNFS [25] assume an
out-of-band mechanism for distributing keys for access
control. Other systems such as Cepheus [18] use a
trusted access control server to distribute keys.

The access control server model requires a great deal
of trust in the server operator. Should the operator prove
unworthy of this trust, he or she could abuse the server’s
key material to decrypt any data stored on the system.
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Furthermore, even if the access control server operator is
trustworthy, placing so much critical key data in a single
location makes for an inviting target.

In contrast, our system makes use of a semi-trusted
access control server. We propose a significant security
improvement to the access control in cryptographic stor-
age, using proxy cryptography to reduce the amount of
trust in the access control server. In our approach, keys
protecting files are stored encrypted under a master pub-
lic key, using one of the schemes in Section 3. When a
user requests a key, the access control server uses proxy
cryptography to directly re-encrypt the appropriate key
to the user without learning the key in the process. Be-
cause the access control server does not itself possess
the master secret, it cannot decrypt the keys it stores.
The master secret key can be stored offline, by a con-
tent owner who uses it only to generate the re-encryption
keys used by the access control server. In Section 4, we
describe our implementation and provide a performance
evaluation of our constructions.

Outsourced Filtering of Encrypted Spam. Another
promising application of proxy re-encryption is the fil-
tering of encrypted emails performed by authorized con-
tractors. The sheer volume of unsolicited email, along
with rapid advances in filter-avoidance techniques, has
overwhelmed the filtering capability of many small busi-
nesses, leading to a potential market for outsourced
email filtering. New privacy regulations, such as
the US Health Insurance Portability and Accountabil-
ity Act (HIPAA), are encouraging companies to adopt
institution-wide email encryption to ensure confidential-
ity of patient information [1]. By accepting encrypted
email from outside sources, institutions become “spam”
targets and filters are only effective on messages that
are first decrypted (which could be unacceptably costly).
Using proxy re-encryption, it becomes possible to redi-
rect incoming encrypted email to an external filtering
contractor at the initial mail gateway, without risking ex-
posure of plaintexts at the gateway itself. Using our tem-
porary proxy re-encryption scheme presented in Sec-
tion 3.2, a healthcare institution can periodically change
filtering contractors without changing its public key.

1.3. Roadmap

The rest of this paper consists of the following. Sec-
tion 2 gives some number theoretic preliminaries and
definitions necessary to understand our schemes and
their security guarantees. Section 3 presents improved
proxy re-encryption schemes as well as a discussion
on the factors to consider when comparing proxy re-

encryption schemes. Section 4 highlights the design,
implementation, and performance measurements of our
proxy re-encryption file system. We provide concluding
remarks in Section 5.

2. Definitions

Our protocols are based on bilinear maps [7, 8, 9, 27]),
which we implemented using the fast Tate pairings [21].

Definition 2.1 (Bilinear Map) We say a map e : G1 ×
Ĝ1 → G2 is a bilinear map if: (1) G1 and G2 are groups
of the same prime order q; (2) for all a, b ∈ Zq , g ∈ G1,
and h ∈ Ĝ1, then e(ga, hb) = e(g, h)ab is efficiently
computable; (3) the map is non-degenerate (i.e., if g
generates G1 and h generates Ĝ1, then e(g, h) gener-
ates G2); and (4) there exists a computable isomorphism
from Ĝ1 to G1. (Here, G1 may equal Ĝ1.)

Now, we explain the different components of a proxy
re-encryption scheme. We will be informal in this sec-
tion, referring an interested reader to Appendix A for
precise definitions.

Definition 2.2 (Unidirectional Proxy Re-encryption)
A re-encryption scheme is a tuple of (possi-
bly probabilistic) polynomial time algorithms
(KG, RG, ~E, R, ~D), where:

• (KG, ~E, ~D) form the standard key generation, en-
cryption, and decryption algorithms.

• On input (pkA, skA, pkB , sk∗
B), the re-encryption

key generation algorithm, RG, outputs a key
rkA→B for the proxy. The fourth input marked
with a ’∗’ is optional.

• On input rkA→B and ciphertext CA, the re-
encryption function, R, outputs CB .

Correctness. Alice should always be able to de-
crypt ciphertexts encrypted under pkA; while Bob
should be able to decrypt re-encrypted ciphertexts
R(rkA→B , CA). The encryption algorithm ~E may al-
low multiple types of encryption, such as first-level en-
cryptions that cannot be re-encrypted and second-level
encryptions that can be. This gives the sender a choice
between encrypting a message only to Alice or to Al-
ice and her delegatee Bob within the same system. For
re-encrypted ciphertexts, we require that the underlying
plaintext remain consistent – i.e., Bob should get exactly
what Alice was supposed to receive.1

1Note, this only applies to ciphertexts that were honestly gener-
ated by the sender; no guarantee is implied in the case of malformed
ciphertexts.
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Security. Our security definition has two parts: stan-
dard security, requiring that the cryptosystem remain
semantically-secure [23] even when all re-encryption
keys are public; and master secret security, where a del-
egator’s master secret key is not recoverable. Our secu-
rity definition is similar to that of Ivan and Dodis [14].
Although their definition was for CCA2 security, they
instead used CPA security for the El Gamal, RSA, and
IBE-based schemes. The first main difference between
our definitions is that we consider the security of a user
against a group of colluding parties; i.e., the security
of a delegator against the proxy and many delegatees,
whereas the Ivan-Dodis definition focused on a single
delegatee. Second, we discuss the system’s security for
circular delegations; that is, when an adversary watches
Alice and Bob delegate to each other. Finally, master
secret security is a new guarantee for the delegator.

3. Improved Proxy Re-encryption Schemes

To talk about “improvements”, we need to get a sense
of the benefits and drawbacks of previous schemes. Here
is a list of, in our opinion, the most useful properties of
proxy re-encryption protocols:

1. Unidirectional: Delegation from A → B does not
allow re-encryption from B → A.

2. Non-interactive: Re-encryption keys can be gener-
ated by Alice using Bob’s public key; no trusted third
party or interaction is required. (Such schemes were
called passive in BBS [6].)

3. Proxy invisibility: This is an important feature of-
fered by the original BBS scheme. The proxy in the
BBS scheme is transparent in the sense that neither the
sender of an encrypted message nor any of the dele-
gatees have to be aware of the existence of the proxy.
Clearly, transparency is very desirable but it is achieved
in the BBS scheme at the price of allowing transitivity of
delegations and recovery of the master secrets of the par-
ticipants. Our pairing-based schemes, to be described
shortly, offer a weaker form of transparency which we
call proxy invisibility. In particular, we allow the sender
to be aware of the proxy and decide whether to generate
an encryption that can be opened only by the intended
recipient (first-level encryption) or by any of the recipi-
ent’s delegatees (second-level encryption). On the other
hand, we can ensure that any delegatee will not be able
to distinguish a first-level encryption (computed under
his public key) from a re-encryption of a ciphertext in-
tended for another party (we are assuming that the en-
crypted message does not reveal information that would
help the delegatee to make this distinction).

4. Original-access: Alice can decrypt re-encrypted

Property BBS [6] ID [14] This work
1. Unidirectional No Yes Yes
2. Non-interactive No Yes Yes
3. Proxy invisible Yes No Yes
4. Original-access Yes† Yes Yes†

5. Key optimal Yes No Yes
6. Collusion-“safe” No No Yes∗

7. Temporary Yes† Yes† Yes†

8. Non-transitive No Yes Yes
9. Non-transferable No No No

Table 1. We compare known proxy re-
encryption schemes based on the ad-
vantages described above; no scheme
achieves property 9. We refer to the uni-
directional schemes of Ivan-Dodis. ∗ indi-
cates master secret key only. † indicates
possible to achieve with additional over-
head.

ciphertexts that were originally sent to her. In some ap-
plications, it may be desirable to maintain access to her
re-encrypted ciphertexts. This is an inherent feature of
the Ivan-Dodis schemes (since the re-encryption key is
a share of the original); the BBS scheme and the pair-
ing schemes presented here can achieve this feature by
adding an additional term to the ciphertext: for exam-
ple, in BBS a re-encrypted ciphertext with original ac-
cess looks like (mgk, gak, (gak)b/a). This may impact
proxy invisibility.

5. Key optimal: The size of Bob’s secret storage re-
mains constant, regardless of how many delegations he
accepts. We call this a key optimal scheme. In the pre-
vious El Gamal and RSA based schemes [14], the stor-
age of both Bob and the proxy grows linearly with the
number of delegations Bob accepts. This is an important
consideration, since the safeguarding and management
of secret keys is often difficult in practice.

6. Collusion-“safe”: One drawback of all previous
schemes is that by colluding Bob and the proxy can re-
cover Alice’s secret key: for Ivan-Dodis, s = s1 + s2;
for BBS, a = (a/b) ∗ b. We will mitigate this problem –
allowing recovery of a “weak” secret key only. In a bi-
linear map setting, suppose Alice’s public key is e(g, g)a

and her secret key is a; then we might allow Bob and the
proxy to recover the value ga, but not a itself. Thus, Al-
ice can delegate decryption rights, while keeping signing
rights for the same public key. In practice, a user can al-
ways use two public keys for encryption and signatures,
but it is theoretically interesting that she doesn’t need to
do so. Prior work on “signcryption” explored this area
(e.g., [38, 4, 3]); here we present, what can be viewed
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as, the first “signREcryption” scheme (although we will
not be formally concerning ourselves with the security
of the signatures in this work).

7. Temporary: Ivan and Dodis [14] suggested ap-
plying generic key-insulation techniques [15, 12, 13] to
their constructions to form schemes where Bob is only
able to decrypt messages intended for Alice that were
authored during some specific time period i. Citing
space considerations, they did not present any concrete
constructions. In Section 3.2, we provide a bilinear map
construction designed specifically for this purpose. In
our construction, a trusted server broadcasts a new ran-
dom number at each time period, which each user can
then use to update their delegated secret keys. This is an
improvement over using current key-insulated schemes
where the trusted server needs to individually interact
with each user to help them update their master (and
therefore, delegation) secret keys.

8. Non-transitive: The proxy, alone, cannot re-
delegate decryption rights. For example, from rk a→b

and rk b→c, he cannot produce rka→c.
9. Non-transferable: The proxy and a set of collud-

ing delegatees cannot re-delegate decryption rights. For
example, from rka→b, sk b, and pk c, they cannot pro-
duce rka→c.We are not aware of any scheme that has
this property, and it is a very desirable one. For instance,
a hospital may be held legally responsible for safeguard-
ing the encrypted files of its patients; thus, if it chooses
to delegate decryption capabilities to a local pharmacy,
it may need some guarantee that this information “goes
no further.” First, we should ask ourselves: is transfer-
ability really preventable? The pharmacy can always de-
crypt and forward the plaintext files to a drug company.
However, this approach requires that the pharmacy re-
main an active, online participant. What we want to pre-
vent is the pharmacy (plus the proxy) providing the drug
company with a secret value that it can use offline to de-
crypt the hospital’s ciphertexts. Again, the pharmacy
can trivially send its secret key to the drug company.
But in doing so, it assumes a security risk that is as po-
tentially injurious to itself as the hospital. Achieving a
proxy scheme that is non-transferable, in the sense that
the only way for Bob to transfer offline decryption capa-
bilities to Carol is to expose his own secret key, seems to
be the main open problem left for proxy re-encryption.

3.1. New Unidirectional Proxy Re-encryption
Schemes

A First Attempt. As Ivan and Dodis pointed
out [14], one method for constructing proxy re-
encryption schemes is to create a cryptosystem that

has two decryption algorithms with two different secret
keys. These cryptosystems typically support a first-level
secret key that decrypts all ciphertexts encrypted under
the corresponding public key, and a second-level secret
key that may decrypt only ciphertexts of a certain form
under the same public key. Notice that there are trivial
solutions to the proxy re-encryption problem when Al-
ice is allowed to use two different key pairs, but we are
interested in solutions that minimize the number to keys
to safeguard and manage while remaining efficient.

In the full version of this paper, we present a variant
of the Paillier cryptosystem with first and second-level
secret keys proposed by Cramer and Shoup [11]. Al-
ice keeps the first-level key for herself and sends the
second-level key to Bob as a delegation, with a proxy
added to further regulate which ciphertexts Bob may
read. This approach is interesting, because it is based on
an assumption other than bilinear maps; and offers the
collusion-“safety” (i.e., protection of the first-level se-
cret key) that the schemes of Ivan-Dodis lack. However,
like the Ivan-Dodis schemes [14], it is not key optimal.

A Second Attempt. To minimize a user’s secret storage
and thus become key optimal, we present the BBS [6],
El Gamal based [16] scheme operating over two groups
G1, G2 of prime order q with a bilinear map e : G2

1 →
G2. The system parameters are random generators g ∈
G1 and Z = e(g, g) ∈ G2.

• Key Generation (KG). A user A’s key pair is of
the form pka = ga, ska = a.

• Re-Encryption Key Generation (RG). A user A
delegates to B by publishing the re-encryption key
rkA→B = gb/a ∈ G1, computed from B’s public
key.

• First-Level Encryption (E1). To encrypt a mes-
sage m ∈ G2 under pka in such a way that it
can only be decrypted by the holder of ska, output
c = (Zak, mZk).

• Second-Level Encryption (E2). To encrypt a mes-
sage m ∈ G2 under pka in such a way that it
can be decrypted by A and her delegatees, output
c = (gak, mZk).

• Re-Encryption (R). Anyone can change a second-
level ciphertext for A into a first-level ciphertext for
B with rkA→B = gb/a. From ca = (gak, mZk),
compute e(gak, gb/a) = Zbk and publish cb =
(Zbk, mZk).

• Decryption (D1). To decrypt a first-level cipher-
text ca = (α, β) with sk = a, compute m =
β/α1/a.

Discussion of Scheme. This scheme is very attractive;
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it is unidirectional, non-interactive, proxy transparent,
collusion-safe, key optimal, and non-transitive. How-
ever, its security requires the assumption that a cannot
be derived from seeing the a-th root of a polynomial set
of random values (which is plausible in a group of prime
order), in addition to the assumption that the following
problem is hard in (G1, G2):

Given (g, ga, gb, Q), for g ← G1, a, b← Zq

and Q ∈ G2, decide if Q = e(g, g)a/b.

There is evidence that the computational Bilinear In-
verse Diffie-Hellman problem is hard [37], but this de-
cisional version has not been studied enough. Next, we
provide a solution which makes fewer (and more stan-
dard) assumptions.

A Third Attempt. The global system parameters (g, Z)
remain unchanged.

• Key Generation (KG). A user A’s key pair is of
the form pka = (Za1 , ga2) and ska = (a1, a2).
(A user can encrypt, sign, and delegate decryption
rights all under Za1 ; if the value ga2 is present, it
signifies that the user is willing to accept delega-
tions.)

• Re-Encryption Key Generation (RG). A user
A delegates to B publishing the re-encryption key
rkA→B = ga1b2 ∈ G1, computed from B’s public
information.

• First-Level Encryption (E1). To encrypt a mes-
sage m ∈ G2 under pka in such a way that it
can only be decrypted by the holder of ska, output
ca,1 = (Za1k, mZk) (to achieve proxy invisibility
output ca,1 = (Za2k, mZk) at no security loss).

• Second-Level Encryption (E2). To encrypt a mes-
sage m ∈ G2 under pka in such a way that it
can be decrypted by A and her delegatees, output
ca,r = (gk, mZa1k).

• Re-Encryption (R). Anyone can change a second-
level ciphertext for A into a first-level cipher-
text for B with rkA→B = ga1b2 . From
ca,r = (gk, mZa1k), compute e(gk, ga1b2) =
Zb2a1k and publish cb,2 = (Zb2a1k, mZa1k) =

(Zb2k′

, mZk′

).
• Decryption (D1, D2). To decrypt a first-level ci-

phertext ca,i = (α, β) with secret key ska, output
β/α1/ai = m for i ∈ {1, 2}.

Discussion of Scheme. This scheme is similar to the pre-
vious one, except to accept delegations, a user must store
two secret keys. The security of this scheme relies on
an extension of the decisional bilinear Diffie-Hellman

(DBDH) assumption [7, 10]; the proof of Boneh and
Franklin [7] that the DBDH problem is hard in generic
groups, in the sense of Shoup [36], can be easily ex-
tended to this problem, when one recalls that the ad-
ditional parameter e(g, g)bc2

is represented as a ran-
dom string in the range of the mapping. Furthermore,
we note that the semantic security for a user who ac-
cepts, but does not give delegations can be reduced to
the CoDDH problem; that is, given (g, ga, Zb, Q) for
random a, b ← Zq and an element Q ∈ G2, decide if
Q = Zab. Original first-level ciphertexts of the form
(Za2k, mZk) are exactly like El Gamal [16] and thus
their security only depends on DDH in G2. However,
under the CoDDH assumption, Alice’s security is as-
sured even when people send her second-level cipher-
texts (not knowing that she isn’t making any delega-
tions). Proof of Theorem 3.1 is in Appendix B.

Theorem 3.1 The above scheme is correct and secure
assuming that for random g ← G1, a, b, c ← Zq , and
Q ∈ G2, given (g, ga, gb, gc, e(g, g)bc2

, Q) it is hard to
decide if Q = e(g, g)abc (standard security) and the dis-
crete logarithm assumption (master secret security).

3.2. Temporary Unidirectional Proxy Re-
encryption

In addition to the global parameters (g, Z), suppose
there is a trusted server that broadcasts a random value
hi ∈ G1 for each time period i ≥ 1 for all users to see.
Let Zi = e(g, hi) ∈ G2. We enable Alice to delegate to
Bob only for time period i, say, while she is on vacation,
as follows.

• Key Generation (KG). A user A’s key pair is of
the form pka = (ga0 , gar), ska = (a0, ar), (plus a
temporary secret ai for time period i which will be
generated in RG).

• Re-Encryption Key Generation (RG). A user A
publicly delegates to B during time period i as fol-
lows: (1) B chooses and stores a random value
bi ∈ Zq , and publishes hbi

i ; then, (2) A computes
and publishes rk

i
A→B = h

arbi/a0

i .
• First-Level Encryption (E1). To encrypt m ∈ G2

under pka during time period i, output ca,0 =

(Za0k
i , mZk

i ).
• Second-Level Encryption (E2). To encrypt m ∈

G2 under pka during time period i, output ca,i =

(ga0k, mZark
i ).

• Re-Encryption (R). Anyone can change a second-
level ciphertext for A into a first-level ciphertext
for B with rkA→B,i = h

arbi/a0

i . From ca,i =
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(ga0k, mZark
i ), compute e(ga0k, rkA→B) =

Zbiark
i and publish cb,i = (Zbiark

i , mZark
i ) =

(Zbik
′

i , mZk′

i ).
• Decryption (D1). To decrypt ca,i = (α, β), com-

pute m = β/α1/ai for ai ∈ {a0, a1, a2, . . .}.

Discussion of Scheme. A single global change can inval-
idate all previous delegations without any user needing
to change their public key. Proof of Theorem 3.2 appears
in the full version of this paper.

Theorem 3.2 The above scheme is correct and secure
assuming that for random g ← G1, a, b, c ← Zq and
Q ∈ G2, given (g, ga, gb, gc, Q) it is hard to decide if
Q = e(g, g)ab2/c (standard security) and the discrete
logarithm assumption (master secret security).

4. Encrypted File Storage
Our file system uses an untrusted access control

server to manage access to encrypted files stored on
distributed, untrusted block stores. We use proxy re-
encryption to allow for access control without granting
full decryption rights to the access control server.

To our knowledge, no experimental implementation
of proxy re-encryption exists, which makes it difficult to
argue about the effectiveness of the proxy re-encryption
primitive.

Overview. In our file system, end users on client ma-
chines wish to obtain access to integrity-protected, con-
fidential content. A content owner publishes encrypted
content in the form of a many-reader, single-writer file
system. The owner encrypts blocks of content with
unique, symmetric content keys. A content key is then
encrypted with an asymmetric master key to form a lock-
box. The lockbox resides with the block it protects.

Untrusted block stores make the encrypted content
available to everyone. Users download the encrypted
content from a block store, then communicate with an
access control server to decrypt the lockboxes protect-
ing the content. The content owner selects which users
should have access to the content and gives the appro-
priate delegation rights to the access control server.

Access Control Using Proxy Cryptography. We pro-
pose an improvement on the access control server model
that reduces the server’s trust requirements by using
proxy cryptography. In our approach, the keys used to
encrypt files are themselves securely encrypted under a
master public key, using one of the schemes in Section 3.
Because the access control server does not possess the

master secret, it cannot be corrupted so as to gain access
to the file keys and access encrypted files. The secret
master secret key remains offline, in the care of a con-
tent owner who uses it only to generate the re-encryption
keys used by the access control server. When an autho-
rized user requests access to a file, the access control
server uses proxy cryptography to directly re-encrypt the
appropriate content key(s) from the master public key to
the user’s public key.

This architecture has significant advantages over sys-
tems with trusted access control servers. The key mate-
rial stored on the access control server cannot be used to
access stored files, which reduces the need to absolutely
trust the server operator, and diminishes the server’s
value to attackers. The master secret key itself is only
required by a content owner when new users are added
to the system, and can therefore be stored safely offline
where it is less vulnerable to compromise. Finally the
schemes in Section 3 are unidirectional, meaning that
users do not need to reveal or otherwise compromise
their secret keys in order to join the system. This allows
content owners to add users to the system without inter-
action, simply by obtaining their public key. Because
this system works with users’ long-term keys (rather
than generating ephemeral keys for the user), there is
an additional incentive for users not to reveal their de-
cryption keys.

The proposed design fundamentally changes the se-
curity of an access control server storage system. In this
new model, much of the security relies on the strength of
a provably-secure cryptosystem, rather than on the trust
of a server operator for mediating access control. Be-
cause the access control server cannot successfully re-
encrypt a file key to a user without possessing a valid
delegation key, the access control server cannot be made
to divulge file keys to a user who has not been specif-
ically authorized by the content owner, unless this at-
tacker has previously stolen a legitimate user’s secret
key.

Chefs. We implemented our file system on top of
Chefs [19], a confidentiality-enabled version of the SFS
Read-Only file system [20]. Chefs is a single-writer,
many-reader file system that provides decentralized ac-
cess control in integrity-protected content distribution.
A content owner creates a signed, encrypted database
from a directory tree of content. The database is then
replicated on untrusted hosts (e.g., volunteers). A client
locates a replica, then requests the encrypted blocks.

Chefs tags each content block with a lockbox. The
lockbox contains a 128-bit AES key, itself encrypted
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4. Re-encrypted lockbox
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2. Encrypted data block

Figure 1. Typical operation of the proxy re-encryption file system. The user’s client machine
fetches encrypted blocks from the block store. Each block includes a lockbox encrypted under
a master public key. The client then transmits lockboxes to the access control server for re-
encryption under the user’s public key. If the access control server possesses the necessary
re-encryption key, it re-encrypts the lockbox and returns the new ciphertext. The client can
then decrypt the re-encrypted block with the user’s secret key.

with a shared group AES key. Chefs assumes an out-of-
band mechanism for content owners to distribute group
keys to users.

We chose the Chefs architecture because it allowed us
to experiment with different granularities of encryption
(per-file and per-directory) while providing a transparent
file system interface for our experiments.

4.1. Design and Implementation

We modified Chefs to include an access control server.
Every block in a Chefs database is encrypted with a
128-bit AES content key in CBC mode. Depending on
the granularity of the encryption, a content key can be
shared across all of the blocks in a particular file, direc-
tory or database, or unique keys can be used for each
block. Content keys are themselves encrypted under
a system master key using the third bilinear El Gamal
scheme from Section 3.1. This encryption results in a
set of lockboxes stored with the file data, either in file or
directory inodes (per-file and per-directory encryption)
or within the blocks themselves (per-block encryption).
The proxy re-encryption makes the sealed lockbox 512
bits, even though it still only protects a 128-bit AES key.

When a client encounters a block for which it does not
possess a content key, it asks the access control server
to re-encrypt the lockbox from the master key to the
client’s public key. If the access control server possesses
an appropriate re-encryption key for this client and mas-
ter key, it performs the appropriate proxy re-encryption
and returns the result to the client, which can then de-
crypt the lockbox. Figure 1 illustrates this procedure.

Each re-encryption call necessarily results in a
round-trip network request, in addition to the proxy
re-encryption and client-side decryption of the re-

encrypted ciphertext. Thus, the choice of encryption
granularity greatly affects the number of re-encryption
calls made from the client to the access control server,
which in turn affects the performance of the system.

4.2. Experimental Results

In implementing a proxy re-encryption file system,
we had two goals in mind. First, we wished to show
that proxy re-encryption could be successfully incorpo-
rated into a basic cryptographic file system. Second, we
sought to prove that the additional security semantics
provided by a proxy re-encrypting access control server
came at an acceptable cost to system performance.

To achieve this second goal, we conducted a num-
ber of benchmarks using the proxy-enabled Chefs file
system, using various granularities of content key us-
age (per-block and per-file). Along with these exper-
iments, we conducted microbenchmarks of the proxy
re-encryption functions used in our implementation, as
well as application-level benchmarks measuring file sys-
tem performance. To provide a standard of compari-
son, we conducted the same experiments on an unmodi-
fied Chefs configuration with no access control server or
proxy re-encryption, using only a single preset AES key
to secure the contents of the database.

Experimental Setup. For the purposes of our test-
ing, we used two machines to benchmark the proxy-
enabled Chefs file system. The client machine con-
sisted of an AMD Athlon 2100+ 1.8 GHz with 1 GB
RAM and an IBM 7200 RPM, 40 GB, Ultra ATA/100
hard drive. The server machine was an Intel Pentium
4 2.8 GHz with 1 GB RAM and a Seagate Barracuda
7200 RPM, 160 GB, Ultra ATA/100 hard drive. Both
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Parameter Encryption Decryption Re-encryption Decryption
size (by original recipient) (by delegatee)

256-bit 3.1 ms 8.6 ms 8.4 ms 1.5 ms
512-bit 7.7 ms 21.9 ms 21.7 ms 3.4 ms

Table 2. Average operation times for the bilinear El Gamal proxy re-encryption scheme on
our client machine. All operations refer to re-encryptable “second-level” ciphertexts.

systems were running Debian testing/unstable. The
client and the server were situated in different cities,
representing a distributed file system scenario. We mea-
sured the round-trip latency between the two machines
at 13 ms, and the maximum sustained throughput of the
network link at 7 Mbit/sec. We implemented the cryp-
tographic primitives for the bilinear El Gamal scheme
using version 4.83 of the MIRACL cryptographic li-
brary [35], which contains efficient implementations of
the Tate pairing as well as fast modular exponentiation
and point multiplication.

Cryptographic Benchmark. Average times for the
cryptographic operations in the bilinear proxy re-
encryption scheme (the third one from Section 3.1) are
given in Table 2, and provide some basis for understand-
ing the impact of the proxy re-encryption on overall
file system performance. These results indicate that re-
encryption is the one of the most time-consuming of the
cryptographic operations performed in our file system.
In our file system, we use 512-bit proxy re-encryption to
protect content keys in lockboxes.

We conducted our benchmarks using the 512-bit pa-
rameter size for the proxy re-encryption scheme, and
various encryption granularities, including per-block
and per-file. Our microbenchmarks, presented in Fig-
ures 2 and 3, include runs of the small-file and large-
file tests from the LFS suite of file system performance
tests [33]. We use the read phases of the LFS test to
measure the fundamental performance of our system.

The first test consists of a sequential read of a large
file. The second test reads several small files. These two
tests capture common workloads in a typical file sys-
tem. For each of these tests, we experimented with dif-
ferent encryption granularities, including per-block and
per-file settings. The small file benchmark in particular
is a worst-case scenario for a proxy-enabled file system,
as it requires a large number of lockbox re-encryptions
relative to the amount of data read. On the other hand,
the large-file case tends to exhibit exactly the opposite
effect, as the ratio of re-encryptions to data read is much
smaller. In general, all per-block encryption scenarios

tend to be the least efficient (and least practical) when
proxy re-encryption is enabled.

Small-file Benchmark. The SFSRO and Chefs bench-
marks each generate 2,022 RPCs to fetch content from
the block store (1,000 files, 10 directories, and one root
directory — each generating two RPCs: one for the in-
ode, one for the content).

Note that Chefs adds virtually no discernible over-
head, even though the client decrypts every content fetch
with 128-bit AES in CBC mode. With the round-trip
time accounting for at least 26 seconds of the measure-
ment, the network overshadows the cost of cryptogra-
phy.

The proxy re-encryption file system first makes 2,022
fetches of content, just like Chefs. With per-file gran-
ularity of content keys, the small-file benchmark gener-
ates 1,011 re-encryption RPCs. The proxy re-encryption
file system takes about 44 seconds longer than Chefs.
We attribute 39 seconds of this difference to the 13 ms
round-trip time, 21.7 ms re-encryption time on the
server, and 3.4 ms delegatee decryption time on the
client for each RPC (See Table 2). We hope to explain
the remaining 5 seconds by conducting measurements
on isolated portions of our client code.

With per-block granularity, the small-file benchmark
generates 2,022 re-encryption RPCs. A file or directory
consists of an inode and data block, thus each read now
generates two re-encryptions. The proxy re-encryption
file system takes about 87 seconds longer than Chefs.
Because the per-block re-encryption generates twice as
many re-encryption RPCs as the per-file scenario, the
results concur with our expectations.

Large-file Benchmark. The large-file benchmark
generates 5,124 RPCs to fetch 40 MB of content from
the block store (two RPCs for the root directory, two for
the file, and 5,120 for the file data). In the SFSRO and
Chefs experiments, the 7 MBit bandwidth largely domi-
nates the throughput.

Because the large-file workload involves only a single
file, the per-file proxy re-encryption has no discernible
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Figure 2. Small-file microbenchmark from
LFS suite. We perform a complete read on
1,000 1 KB files dispersed in 10 directories.
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Figure 3. Large-file microbenchmark from
LFS suite. We perform a sequential read
on a 40 MB file in 8 KB blocks.

cost. There are a mere two proxy re-encryption RPCs
(one for the root, one for the file). The per-block proxy
re-encryption generates 5,124 re-encryption RPCs, thus
we expect a significant degradation of throughput be-
cause of the number of extra round-trips.

The cost of per-block re-encryption is prohibitively
expensive for large files. We expect that per-file gran-
ularity or per-file-system granularity will be much more
common than per-block granularity. For instance, we
do not expect users to grant access to portions of a sin-
gle file. Rather, we expect users would share access-
controlled content in collections of files — similar to a
collection of Web pages or a directory subtree.

Application-level Benchmark. Our application-level
benchmark consists of an Emacs version 21.3 compila-
tion. The source code is stored in our file system, while
the resulting binaries are written to a local disk. This
workload requires access to approximately 300 files.
The results of this test are presented in Figure 4, and
show that the per-file and even per-block proxy cryp-
tography adds negligible overhead for this application
workload. We believe the cost is nominal for the addi-
tional security semantics of proxy re-encryption.

Scalability. We also measured how well the access
control server performs under a heavy load. Figure 5
shows that our proxy re-encryption server can scale up to
1,000 pending requests before exhibiting signs of stress.
We replayed a trace of proxy re-encryption RPCs. This
required no computation on the client side, but caused
the server to perform proxy re-encryption. We start by
issuing a single request, waiting for the response before
issuing another request. To simulate many simultaneous
clients, we gradually increase the window size of out-
standing RPCs.

Our server is able to sustain 100 re-encryptions/sec
until reaching about 1,000 outstanding requests. The
server coped with up to 10,000 outstanding re-
encryption requests, but quickly spiraled downwards
thereafter. Note that our server is faster than the client
machine, able to perform a single proxy re-encryption in
9 ms.

4.3. Discussion

Our access control server acts like a credentials down-
load service. For instance, PDM [31] stores encrypted
credentials on a server. A user decrypts the credentials
with a password. PDM works fine when an encrypted
credential is available to a single individual. However,
our file system supports group access control. We could
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Figure 4. Application-level benchmark. We
record the time to compile Emacs version
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Figure 5. Aggregate access control server
throughput. The server can tolerate 1,000
simultaneous re-encryption requests be-
fore showing signs of saturation.

use PDM instead of our access control server, but this
would reduce the key distribution problem to that of
sharing a password with all group members.

We selected a single-writer, many-reader file system
rather than a general purpose file system to experiment
with proxy re-encryption in content distribution. This
eliminates problems not directly related to proxy re-
encryption, such as fork consistency [29].

In practice, an organization’s data may consist of
many distinct file sets or equivalence classes, access to
each of which should be limited to a subset of the orga-
nization’s members. For instance, a large company with
several departments might wish to keep data from in-
dividual departments confidential within the originating
department. However, an access control server shared
with other departments would have advantages in relia-
bility and logging. This can easily be achieved by us-
ing many different master keys, each of which encrypts
content keys for files owned to a different group. The
corresponding secret keys can be held by different con-
tent owners, whose only operational responsibility is to
generate re-encryption keys for new users.

Because there is no fundamental difference in format
between a master public key and a user’s public key, in-
dividual users can use their own public keys as master
keys, allowing users to act as content owners of their
own personal file sets. Additional possibilities can be
achieved if multiple file keys are used to encrypt single
files, allowing for files that are available only to users
who belong to multiple groups simultaneously.

We believe that our experimental results demonstrate
the practicality of proxy re-encryption in protecting
stored content. Though proxy re-encryption adds a level
of overhead to file system, this overhead is not extreme,
and can be worth the additional security that comes from
centralizing access control at a semi-trusted access con-
trol server. Various system choices, such as parameter
sizes and encryption granularity can greatly affect the
efficiency of the system; we have selected the ones we
believe to be most promising.

5. Conclusions

In this paper, we explored proxy re-encryption from
a predominately systems perspective. We outlined the
characteristics and security guarantees of previously
known schemes, and compared them to a suite of im-
proved re-encryption schemes we present over bilinear
maps. These pairing-based schemes realize important
new features, such as safeguarding the master secret key
of the delegator from a colluding proxy and delegatee.
One of the most promising applications for proxy re-
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encryption is giving proxy capabilities to the key server
of a confidential distributed file system; this way the key
server need not be fully trusted with all the keys of the
system and the secret storage for each user can also be
reduced. We implemented this idea in the context of the
SFSRO file system, and showed experimentally that the
additional security benefits of proxy re-encryption can
be purchased for a manageable amount of run-time over-
head. We leave open the theoretical problem of finding
a proxy re-encryption scheme that does not allow fur-
ther delegations; that is, Bob (plus the proxy) can not
delegate to Carol what Alice has delegated to him. We
also leave open the practical problems of finding more
efficient implementations of secure proxy re-encryption
schemes, as well as conducting more experimental tests
in other applications.

Chefs is part of the SFSRO code base available via
CVS from www.fs.net. Source code for our proxy
re-encryption library and file system is available upon
email request.
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A. Definition of Unidirectional Proxy En-
cryption

Definition A.1 (Unidirectional Proxy Re-encryption)
A unidirectional proxy re-encryption scheme is a tuple
of (possibly probabilistic) polynomial time algorithms
(KG, RG, ~E, R, ~D), where the components are defined
as follows:

• (KG, ~E, ~D) are the standard key generation, en-
cryption, and decryption algorithms for the under-
lying cryptosystem. Here ~E and ~D are (possibly
singleton) sets of algorithms. On input the security
parameter 1k, KG outputs a key pair (pk , sk). On
input pkA and message m ∈ M , for all Ei ∈ ~E
the output is a ciphertext CA. On input skA and
ciphertext CA, there exists a Di ∈ ~D that outputs
the message m ∈M .

• On input (pkA, sk †
A, pkB , sk∗

B), the re-encryption
key generation algorithm, RG, outputs a key
rkA→B for the proxy. The fourth input marked
with a ’∗’ is sometimes omitted; when this hap-
pens we say that RG is non-interactive since the
delegatee does not need to be involved in the gen-
eration of the re-encryption keys. The second in-
put marked with a ’†’ may be replaced by the tuple
(rkA→C , skC); see Remark A.3 for more.

• On input rkA→B and ciphertext CA, re-encryption
function, R, outputs CB .

Correctness. Informally, a party holding a secret key
skA should always be able to decrypt ciphertexts en-
crypted under pkA; while a party B should be able
to decrypt R(rkA→B , CA). ~E may contain multiple
encryption algorithms; for example, having first-level
encryptions that cannot be re-encrypted by the proxy;
while second-level encryptions can be re-encrypted by
the proxy and then decrypted by delegatees. This pro-
vides the sender with a choice given the same public key
whether to encrypt a message only to Alice or to Al-
ice and, say, her secretary. Whenever a re-encryption
does take place, however, we require that the underlying
plaintext remain consistent – i.e., Bob should get exactly
what Alice was supposed to receive.2

2Note, this only applies to ciphertexts that were honestly gener-
ated by the sender; no guarantee is implied in the case of malformed
ciphertexts.
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More formally, let key pairs (pkA, skA) and
(pkB , skB), generated according to KG, belong to par-
ties A and B, respectively, and let rkA→B be generated
according to RG. Then, for all messages m in the mes-
sage space M , the following equations hold with proba-
bility one:

∀Ei ∈ ~E, ∃Dj ∈ ~D,

Dj(skA, Ei(pkA, m)) = m,

∃Ei ∈ ~E, ∃Dj ∈ ~D,

Dj(skB , R(rkA→B , Ei(pkA, m))) = m.

We provide a security definition similar to that of
Ivan and Dodis [14]. Although their definition was for
CCA2 security, they instead used CPA security for the
El Gamal, RSA, and IBE-based schemes; for simplicity,
we focus directly on CPA security. The first main differ-
ence between our definitions is that we consider the se-
curity of a user against a group of colluding parties; for
example, the security of a delegator against the proxy
and many delegatees, whereas the Ivan-Dodis definition
focused on a single delegatee. Secondly, we discuss the
system’s security for circular delegation where the ad-
versary watches Alice and Bob delegate to each other.
Finally, we provide a new guarantee for the delegator –
even if the proxy and all delegatees collude, they can not
recover his master secret key. We discuss some benefits
of this last feature in Remark A.4.

Definition A.2 (Security of U. P. Re-encryption)
Let Γ = (KG, RG, ~E, R, ~D) be a unidirectional proxy
re-encryption scheme.

Standard Security. The underlying cryptosystem
(KG, ~E, ~D) is semantically-secure [23] against anyone
who has not been delegated the right to decrypt. That is,
for all PPT algorithms Ak, Ei ∈ ~E, and m0, m1 ∈Mk,

Pr[(pkB , skB)← KG(1k), {(pk q, sk q)← KG(1k)},

{rk q→B ← RG(pk q, sk q , pkB , sk∗
B)},

{(pkh, skh)← KG(1k)},

{rkB→h ← RG(pkB , skB , pkh, sk∗
h)},

{rkh→B ← RG(pkh, skh, pkB , sk∗
B)},

(m0, m1, α)← Ak(pkB , {(pk q, sk q)}, . . .

. . . {pkh}, {rk q→B}, {rkB→h}),

b← {0, 1}, b′ ← Ak(α, Ei(pkB , mb)) :

b = b′] = ν(k).

Master Secret Security. The long term secrets of a
delegator (sometimes serving as a delegatee) cannot be

computed or inferred by even a coalition of colluding
delegatees. For all PPT algorithms Ak ,

Pr[(pkB , skB)← KG(1k), {(pk q , sk q)← KG(1k)},

{rkB→q ← RG(pkB , skB , pk q , sk
∗
q)},

{rkq→B ← RG(pk q , sk q, pkB , sk∗
B)},

α← Ak(pkB , {(pk q , sk q)}, {rkB→q}, {rkq→B}) :

α = skB ] = ν(k).

Remark A.3 Unfortunately, acheiving security based
on the definition of the re-encryption key generation
function RG as originally stated is very difficult to re-
alize. We do not know of any such scheme, includ-
ing the prior work of Ivan and Dodis [14], that does
not succumb to the follow attack: transfer of dele-
gation rights, where, on input skB and rkA→B , one
can compute rkA→C . (Recall our discussion of non-
transferability in Section 3.) To see this in our second
and third schemes, consider that on input b and gb/a, one
can output (gb/a)1/b = g1/a which would allow any-
one to decrypt Alice’s second-level ciphertexts. Thus,
we modify the definition of RG to be executed with
either the secret key of the delgator Alice skA or with
both a re-encryption key from Alice to Bob rkA→B and
Bob’s secret key skB . This implies that Bob is allowed
to transfer Alice’s decryption capability. Arguably, this
relaxed definition is not so damaging since Alice is al-
ready trusting Bob enough to delegate decryption rights
to him.

Remark A.4 At first glance, master secret security may
seem very weak. All it guarantees is that an adver-
sary cannot output a delegator’s secret key skA. One
might ask why this is useful. Recall, however, that most
standard signature schemes, such as El Gamal [16] and
Schnorr [34], are actually proofs of knowledge of a dis-
crete logarithm value, such as skA = a ∈ Zq , turned
into a signature using the Fiat-Shamir heuristic [17]. In-
tuitively, if an adversary cannot output Alice’s secret
key, then the adversary cannot prove knowledge of it
either. Thus, using a proxy re-encryption scheme with
master secret security means that a user may be able to
safely delegate decryption rights (via releasing ga) with-
out delegating signing rights for the same public key Za.

B. Proofs of Security
Theorem 3.1 The scheme in Section 3.1 is cor-
rect and secure under the extended decisional bilinear
Diffie-Hellman (EDBDH) assumption that is for ran-
dom g ← G1, a, b, c ← Zq , and d ∈ Zq , given
(g, ga, gb, gc, Zbc2

, Zd) it is hard to decide if d ≡ abc
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mod q (standard security) and the discrete logarithm as-
sumption (master secret security).

Proof. Our security definition quantifies over all encryp-
tion algorithms Ei ∈ ~E; in this case, we have two al-
gorithms E1, E2, where a ciphertext of the first form
(Zk, mZa1k) can be publicly computed from a cipher-
text of the second form (gk, mZa1k) via e(g, gk) = Zk.
Thus, it suffices to argue the security of E2 only.

Standard Security.3 Suppose A distinguishes en-
cryptions of E2 with non-negligible probability, we sim-
ulate an adversary S that decides eDBDH as follows:

1. On input (g, ga, gb, gc, Zbc2

, Zd), the simulator
sets y = gc, W = e(y, y), and obtains the tuple:

(y = gc, yα = ga, yβ = gb, yγ = g,

W β/γ = Zbc2

, W αβ/γ = Zd),

for α = a
c , β = b

c , γ = 1
c .

The simulator sends A the global parameters
(y, W ) and the target public key pkT =
(W β/γ , gt), where t is randomly selected from Zq .

2. Next, for i = 1 up to poly(k), A can request:

(a) a delegation from T to an honest party.
S randomly selects r(i,1), r(i,2) ← Zq ,
sets rkT→i ← yγr(i,2) and pk i =
(W r(i,1) , yβr(i,2)), and sends (pk i, rkT→i) to
A.

(b) a delegation to T from an honest party. S uses
either the recorded value r(i,1) from the pre-
vious step if the honest party already exists,
or generates fresh random values for a new
party, and computes rk i→T = (gt)r(i,1) .

(c) a delegation to T from a party corrupted by
A. A can generate these delegations inter-
nally by running (pk i, sk i) ← KG(1k) and
computing rk i→T = (gt)i1 .

3. Eventually, A must output a challenge (m0, m1, τ),
where m0 6= m1 ∈ M and τ is its internal
state information. The simulator randomly se-
lects b ∈ {0, 1}, computes the ciphertext cb =
(yα, mbW

αβ/γ), sends (cb, τ) to A, and waits for
A to output b′ ∈ {0, 1}.

4. If b = b′, then S guesses “d = abc”; otherwise S
guesses “d 6= abc”.

3The semantic security for a user who accepts, but does not give
delegations can be reduced to the CoDDH problem; that is, given
(g, ga, Zb,Q) for random a, b ← Zq and an element Q ∈ G2, de-
cide if Q = Zab. Here, we prove security for a more general set of
users as in definition A.2.

First, we observe that if d = abc, then the simula-
tion is perfect; and if d 6= abc, then mb is information-
theoretically hidden from A, since W αβ/γ(=Zd) was
chosen independently of yα=(ga). Thus, if A succeeds
with probability 1/2+ε, then S succeeds with probabil-
ity 1/2+ ε/2. This contradicts the eDBDH assumption.

Master Secret Security. Suppose an adversary A can
recover the secret key of a targeted user T (i.e., sk t =
(t1, t2)) with non-negligible probability by interacting
with T according to the second part of definition A.2,
then we can build an adversary S that takes discrete logs
in G1. Let us focus our attention on recovering only the
value b1. Our simulator S works as follows:

1. On input (g, ga) in G1, output the global pa-
rameters (g, Z) and the target public key pk t =
(Za, gt2), where Za = e(g, ga) and t2 is a random
element in Zq .

2. Next, for i = 1 up to poly(k), A can request:

(a) a delegation from T to a party corrupted
by A. S randomly selects r(i,1), r(i,2) ←
Zq , sets rkT→i ← gar(i,2) , pk i =
(W r(i,1) , gr(i,2)), and sk i = (r(i,1), r(i,2)),
and sends (pk i, sk i, rkT→i) to A.

(b) a delegation to T from a party corrupted by
A. A can generate these delegations inter-
nally by running (pk i, sk i) ← KG(1k) and
computing rk i→T = (gt2)i1 .

3. Eventually, A must output a purported secret key
for T of the form (α, β). The simulator returns the
value α.

The simulation is perfect; thus A must not be able
to recover the master secret key of T , despite accept-
ing and providing numerous delegations to T , because
otherwise, S can efficiently solve the discrete logarithm
problem in G1. 2


